我们介绍了Spotcheck,这是一个用于生成用于评估图像分类器中盲点(即系统错误)方法的合成数据集的框架。我们使用Spotcheck进行对照研究,了解各种因素如何影响盲点发现方法的性能。我们的实验揭示了现有方法的几个缺点,例如在具有多个盲点的设置中的性能相对较差,并且对超参数的敏感性。此外,我们发现一种基于降低性的方法Planespot与现有方法具有竞争力,这对交互式工具的开发具有希望。
translated by 谷歌翻译
越来越多的研究进行了人类主题评估,以研究为用户提供机器学习模型的解释是否可以帮助他们制定实际现实世界中的用例。但是,运行的用户研究具有挑战性且昂贵,因此每个研究通常只评估有限的不同设置,例如,研究通常只评估一些任意选择的解释方法。为了应对这些挑战和援助用户研究设计,我们介绍了用用例的模拟评估(Simevals)。 SIMEVALS涉及培训算法剂,以输入信息内容(例如模型解释),这些信息内容将在人类学科研究中提交给每个参与者,以预测感兴趣的用例的答案。算法代理的测试集精度提供了衡量下游用例信息内容的预测性。我们对三种现实世界用例(正向模拟,模型调试和反事实推理)进行全面评估,以证明Simevals可以有效地确定哪种解释方法将为每个用例提供帮助。这些结果提供了证据表明,Simevals可用于有效筛选一组重要的用户研究设计决策,例如在进行潜在昂贵的用户研究之前,选择应向用户提供哪些解释。
translated by 谷歌翻译
机器学习模型通常使用诸如“依靠人的存在来检测网球拍”的虚假模式,这不概括。在这项工作中,我们介绍了一个端到端的管道,用于识别和减轻图像分类器的虚假模式。我们首先找到“模型对网球拍预测的模式,如果我们隐藏人民的时间似的63%。”然后,如果模式是虚幻的,我们通过新颖的数据增强来减轻它。我们展示了这种方法识别了一种多样化的杂散模式,并且它通过产生一个模型来减轻它们,这些模型在虚假图案对虚假模式对分布偏移不有用和更鲁棒的分布上进行更准确。
translated by 谷歌翻译
显着性方法是一种流行的特征归因说明方法,旨在通过识别输入图像中的“重要”像素来捕获模型的预测推理。但是,由于缺乏获得地面模型推理的访问,这些方法的开发和采用受到阻碍,从而阻止了准确的评估。在这项工作中,我们设计了一个合成的基准测试框架SMERF,该框架使我们能够在控制模型推理的复杂性的同时进行基于基础真相的评估。在实验上,SMERF揭示了现有的显着性方法的重大局限性,因此代表了开发新显着性方法的有用工具。
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
In recent years several learning approaches to point goal navigation in previously unseen environments have been proposed. They vary in the representations of the environments, problem decomposition, and experimental evaluation. In this work, we compare the state-of-the-art Deep Reinforcement Learning based approaches with Partially Observable Markov Decision Process (POMDP) formulation of the point goal navigation problem. We adapt the (POMDP) sub-goal framework proposed by [1] and modify the component that estimates frontier properties by using partial semantic maps of indoor scenes built from images' semantic segmentation. In addition to the well-known completeness of the model-based approach, we demonstrate that it is robust and efficient in that it leverages informative, learned properties of the frontiers compared to an optimistic frontier-based planner. We also demonstrate its data efficiency compared to the end-to-end deep reinforcement learning approaches. We compare our results against an optimistic planner, ANS and DD-PPO on Matterport3D dataset using the Habitat Simulator. We show comparable, though slightly worse performance than the SOTA DD-PPO approach, yet with far fewer data.
translated by 谷歌翻译
It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.
translated by 谷歌翻译
Convolutional neural networks (CNNs) are currently among the most widely-used neural networks available and achieve state-of-the-art performance for many problems. While originally applied to computer vision tasks, CNNs work well with any data with a spatial relationship, besides images, and have been applied to different fields. However, recent works have highlighted how CNNs, like other deep learning models, are sensitive to noise injection which can jeopardise their performance. This paper quantifies the numerical uncertainty of the floating point arithmetic inaccuracies of the inference stage of DeepGOPlus, a CNN that predicts protein function, in order to determine its numerical stability. In addition, this paper investigates the possibility to use reduced-precision floating point formats for DeepGOPlus inference to reduce memory consumption and latency. This is achieved with Monte Carlo Arithmetic, a technique that experimentally quantifies floating point operation errors and VPREC, a tool that emulates results with customizable floating point precision formats. Focus is placed on the inference stage as it is the main deliverable of the DeepGOPlus model that will be used across environments and therefore most likely be subjected to the most amount of noise. Furthermore, studies have shown that the inference stage is the part of the model which is most disposed to being scaled down in terms of reduced precision. All in all, it has been found that the numerical uncertainty of the DeepGOPlus CNN is very low at its current numerical precision format, but the model cannot currently be reduced to a lower precision that might render it more lightweight.
translated by 谷歌翻译
With water quality management processes, identifying and interpreting relationships between features, such as location and weather variable tuples, and water quality variables, such as levels of bacteria, is key to gaining insights and identifying areas where interventions should be made. There is a need for a search process to identify the locations and types of phenomena that are influencing water quality and a need to explain why the quality is being affected and which factors are most relevant. This paper addresses both of these issues through the development of a process for collecting data for features that represent a variety of variables over a spatial region, which are used for training and inference, and analysing the performance of the features using the model and Shapley values. Shapley values originated in cooperative game theory and can be used to aid in the interpretation of machine learning results. Evaluations are performed using several machine learning algorithms and water quality data from the Dublin Grand Canal basin.
translated by 谷歌翻译